Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 6 Jun 2022 (v1), last revised 21 Nov 2024 (this version, v3)]
Title:CTVR-EHO TDA-IPH Topological Optimized Convolutional Visual Recurrent Network for Brain Tumor Segmentation and Classification
View PDFAbstract:In today's world of health care, brain tumor detection has become common. However, the manual brain tumor classification approach is time-consuming. So Deep Convolutional Neural Network (DCNN) is used by many researchers in the medical field for making accurate diagnoses and aiding in the patient's treatment. The traditional techniques have problems such as overfitting and the inability to extract necessary features. To overcome these problems, we developed the Topological Data Analysis based Improved Persistent Homology (TDA-IPH) and Convolutional Transfer learning and Visual Recurrent learning with Elephant Herding Optimization hyper-parameter tuning (CTVR-EHO) models for brain tumor segmentation and classification. Initially, the Topological Data Analysis based Improved Persistent Homology is designed to segment the brain tumor image. Then, from the segmented image, features are extracted using TL via the AlexNet model and Bidirectional Visual Long Short-Term Memory (Bi-VLSTM). Next, elephant Herding Optimization (EHO) is used to tune the hyperparameters of both networks to get an optimal result. Finally, extracted features are concatenated and classified using the softmax activation layer. The simulation result of this proposed CTVR-EHO and TDA-IPH method is analyzed based on precision, accuracy, recall, loss, and F score metrics. When compared to other existing brain tumor segmentation and classification models, the proposed CTVR-EHO and TDA-IPH approaches show high accuracy (99.8%), high recall (99.23%), high precision (99.67%), and high F score (99.59%).
Submission history
From: Kapil Kumar Nagwanshi [view email][v1] Mon, 6 Jun 2022 07:04:05 UTC (687 KB)
[v2] Sun, 14 Jul 2024 11:41:54 UTC (2,380 KB)
[v3] Thu, 21 Nov 2024 12:08:39 UTC (2,226 KB)
Current browse context:
eess.IV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.