Condensed Matter > Strongly Correlated Electrons
[Submitted on 8 Feb 2023 (v1), last revised 3 Aug 2023 (this version, v2)]
Title:Variational Tensor Wavefunctions for the Interacting Quantum Spin Hall Phase
View PDFAbstract:The quantum spin hall (QSH) phase, also known as the 2D topological insulator, is characterized by protected helical edge modes arising from time reversal symmetry. While initially proposed for band insulators, this phase can also manifest in strongly-correlated systems where conventional band theory fails. To overcome the challenge of simulating this phase in realistic correlated models, we propose a novel framework utilizing fermionic tensor network states. Our approach involves constructing a tensor representation of the fixed-point wavefunction based on an exact solvable model, enabling us to derive a set of tensor equations governing the transformation rules of local tensors under symmetry operations. These tensor equations lead to the anomalous edge theory, which provides a comprehensive description of the QSH phase. By solving these tensor equations, we obtain variational ansatz for the QSH phase, which we subsequently verify through numerical calculations. This method serves as an initial step towards employing tensor algorithms to simulate the QSH phase in strongly-correlated systems, opening new avenues for investigating and understanding topological phenomena in complex materials.
Submission history
From: Yixin Ma [view email][v1] Wed, 8 Feb 2023 04:50:15 UTC (667 KB)
[v2] Thu, 3 Aug 2023 10:21:01 UTC (1,618 KB)
Current browse context:
cond-mat.str-el
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.