Mathematics > Operator Algebras
[Submitted on 19 May 2023 (v1), last revised 27 Oct 2023 (this version, v2)]
Title:Even spheres as joint spectra of matrix models
View PDFAbstract:The Clifford spectrum is a form of joint spectrum for noncommuting matrices. This theory has been applied in photonics, condensed matter and string theory. In applications, the Clifford spectrum can be efficiently approximated using numerical methods, but this only is possible in low dimensional example. Here we examine the higher-dimensional spheres that can arise from theoretical examples. We also describe a constuctive method to generate five real symmetric almost commuting matrices that have a $K$-theoretical obstruction to being close to commuting matrices. For this, we look to matrix models of topological electric circuits.
Submission history
From: Terry Loring A [view email][v1] Fri, 19 May 2023 22:41:07 UTC (263 KB)
[v2] Fri, 27 Oct 2023 22:36:48 UTC (265 KB)
Current browse context:
math.OA
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.