Quantum Physics
[Submitted on 23 May 2023 (v1), last revised 1 Sep 2023 (this version, v2)]
Title:Controlling quantum chaos: time-dependent kicked rotor
View PDFAbstract:One major objective of controlling classical chaotic dynamical systems is exploiting the system's extreme sensitivity to initial conditions in order to arrive at a predetermined target state. In a recent letter [Phys.~Rev.~Lett. 130, 020201 (2023)], a generalization of this targeting method to quantum systems was demonstrated using successive unitary transformations that counter the natural spreading of a quantum state. In this paper further details are given and an important quite general extension is established. In particular, an alternate approach to constructing the coherent control dynamics is given, which introduces a new time-dependent, locally stable control Hamiltonian that continues to use the chaotic heteroclinic orbits previously introduced, but without the need of countering quantum state spreading. Implementing that extension for the quantum kicked rotor generates a much simpler approximate control technique than discussed in the letter, which is a little less accurate, but far more easily realizable in experiments. The simpler method's error can still be made to vanish as $\hbar \rightarrow 0$.
Submission history
From: Steven Tomsovic [view email][v1] Tue, 23 May 2023 16:07:34 UTC (2,806 KB)
[v2] Fri, 1 Sep 2023 20:35:17 UTC (2,813 KB)
Current browse context:
quant-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.