Condensed Matter > Mesoscale and Nanoscale Physics
[Submitted on 19 Jul 2023]
Title:Zero-field spin waves in YIG nano-waveguides
View PDFAbstract:Spin-wave based transmission and processing of information is a promising emerging nano-technology that can help overcome limitations of traditional electronics based on the transfer of electrical charge. Among the most important challenges for this technology is the implementation of spin-wave devices that can operate without the need for an external bias magnetic field. Here we experimentally demonstrate that this can be achieved using sub-micrometer wide spin-wave waveguides fabricated from ultrathin films of low-loss magnetic insulator - Yttrium Iron Garnet (YIG). We show that these waveguides exhibit a highly stable single-domain static magnetic configuration at zero field and support long-range propagation of spin waves with gigahertz frequencies. The experimental results are supported by micromagnetic simulations, which additionally provide information for optimization of zero-field guiding structures. Our findings create the basis for the development of energy-efficient zero-field spin-wave devices and circuits.
Submission history
From: Vladislav Demidov [view email][v1] Wed, 19 Jul 2023 07:47:40 UTC (2,121 KB)
Current browse context:
cond-mat.mes-hall
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.