High Energy Physics - Experiment
[Submitted on 1 Nov 2023]
Title:Progress in the partial-wave analysis methods at COMPASS
View PDFAbstract:We study the excitation spectrum of light and strange mesons in diffractive scattering. We identify different hadron resonances through partial wave analysis, which inherently relies on analysis models. Besides statistical uncertainties, the model dependence of the analysis introduces dominant systematic uncertainties. We discuss several of their sources for the $\pi^-\pi^-\pi^+$ and $K^0_S K^-$ final states and present methods to reduce them. We have developed a new approach exploiting a-priori knowledge of signal continuity over adjacent final-state-mass bins to stably fit a large pool of partial-waves to our data, allowing a clean identification of very small signals in our large data sets. For two-body final states of scalar particles, such as $K^0_S K^-$, mathematical ambiguities in the partial-wave decomposition lead to the same intensity distribution for different combinations of amplitude values. We will discuss these ambiguities and present solutions to resolve or at least reduce the number of possible solutions. Resolving these issues will allow for a complementary analysis of the $a_J$-like resonance sector in these two final states.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.