Mathematics > Numerical Analysis
[Submitted on 1 Nov 2023 (v1), last revised 14 Nov 2024 (this version, v3)]
Title:Error analysis for a finite element approximation of the steady $p(\cdot)$-Navier-Stokes equations
View PDF HTML (experimental)Abstract:In this paper, we examine a finite element approximation of the steady $p(\cdot)$-Navier-Stokes equations ($p(\cdot)$ is variable dependent) and prove orders of convergence by assuming natural fractional regularity assumptions on the velocity vector field and the kinematic pressure. Compared to previous results, we treat the convective term and employ a more practicable discretization of the power-law index $p(\cdot)$. Numerical experiments confirm the quasi-optimality of the $\textit{a priori}$ error estimates (for the velocity) with respect to fractional regularity assumptions on the velocity vector field and the kinematic pressure.
Submission history
From: Alex Kaltenbach [view email][v1] Wed, 1 Nov 2023 14:12:39 UTC (6,039 KB)
[v2] Fri, 8 Nov 2024 05:33:47 UTC (11,129 KB)
[v3] Thu, 14 Nov 2024 18:33:14 UTC (11,129 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.