Mathematics > Probability
[Submitted on 4 Dec 2023 (v1), last revised 21 Nov 2024 (this version, v3)]
Title:Set-valued stochastic integrals for convoluted Lévy processes
View PDF HTML (experimental)Abstract:In this paper we study set-valued Volterra-type stochastic integrals driven by Lévy processes. Upon extending the classical definitions of set-valued stochastic integral functionals to convoluted integrals with square-integrable kernels, set-valued convoluted stochastic integrals are defined by taking the closed decomposable hull of the integral functionals for generic time. We show that, aside from well-established results for set-valued Itô integrals, while set-valued stochastic integrals with respect to a finite-variation Poisson random measure are guaranteed to be integrably bounded for bounded integrands, this is not true when the random measure is of infinite variation. For indefinite integrals, we prove that it is a mutual effect of kernel singularity and jumps that the set-valued convoluted integrals are possibly explosive and take extended vector values. These results have some important implications on how set-valued fractional dynamical systems are to be constructed in general. Two classes of set-monotone processes are studied for practical interests in economic and financial modeling.
Submission history
From: Weixuan Xia [view email][v1] Mon, 4 Dec 2023 08:43:28 UTC (27 KB)
[v2] Mon, 19 Aug 2024 17:05:19 UTC (28 KB)
[v3] Thu, 21 Nov 2024 00:01:10 UTC (28 KB)
Current browse context:
math.PR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.