Astrophysics > Cosmology and Nongalactic Astrophysics
[Submitted on 22 Jan 2024 (v1), last revised 1 Aug 2024 (this version, v4)]
Title:Improved model of large-field inflation with primordial black hole production in Starobinsky-like supergravity
View PDF HTML (experimental)Abstract:A viable model of large-field (chaotic) inflation with efficient production of primordial black holes is proposed in Starobinsky-like (modified) supergravity leading to the "no-scale-type" Kähler potential and the Wess-Zumino-type ("renormalizable") superpotential. The cosmological tilts are in good (within $1\sigma$) agreement with Planck measurements of the cosmic microwave background radiation. In addition, the power spectrum of scalar perturbations has a large peak at smaller scales, which leads to a production of primordial black holes from gravitational collapse of large perturbations with the masses about $10^{17}$ g. The masses are beyond the Hawking (black hole) evaporation limit of $10^{15}$ g, so that those primordial black holes may be viewed as viable candidates for part or the whole of the current dark matter. The parameters of the superpotential were fine-tuned for those purposes, while the cubic term in the superpotential is essential whereas the quadratic term should vanish. The vacuum after inflation (relevant to reheating) is Minkowskian. The energy density fraction of the gravitational waves induced by the production of primordial black holes and their frequency were also calculated in the second order with respect to perturbations.
Submission history
From: Sergei V. Ketov [view email][v1] Mon, 22 Jan 2024 02:06:49 UTC (357 KB)
[v2] Mon, 29 Jan 2024 07:08:27 UTC (358 KB)
[v3] Wed, 22 May 2024 05:01:51 UTC (378 KB)
[v4] Thu, 1 Aug 2024 04:03:36 UTC (474 KB)
Current browse context:
astro-ph.CO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.