Astrophysics > High Energy Astrophysical Phenomena
[Submitted on 22 Jan 2024]
Title:Rotating massive strangeon stars and X-ray plateau of short GRBs
View PDFAbstract:Strangeon stars, which are proposed to describe the nature of pulsar-like compact stars, have passed various observational tests. The maximum mass of a non-rotating strangeon star could be high, which implies that the remnants of binary strangeon star mergers could even be long-lived massive strangeon stars. We study rigidly rotating strangeon stars in the slowly rotating approximation, using the Lennard-Jones model for the equation of state. Rotation can significantly increase the maximum mass of strangeon stars with unchanged baryon numbers, enlarging the mass-range of long-lived strangeon stars. During spin-down after merger, the decrease of radius of the remnant will lead to the release of gravitational energy. Taking into account the efficiency of converting the gravitational energy luminosity to the observed X-ray luminosity, we find that the gravitational energy could provide an alternative energy source for the plateau emission of X-ray afterglow. The fitting results of X-ray plateau emission of some short gamma-ray bursts suggest that the magnetic dipole field strength of the remnants can be much smaller than that of expected when the plateau emission is powered only by spin-down luminosity of magnetars.
Current browse context:
astro-ph.HE
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.