High Energy Physics - Phenomenology
[Submitted on 4 Feb 2024 (v1), last revised 4 Apr 2024 (this version, v2)]
Title:Probing quantum decoherence at Belle II and LHCb
View PDF HTML (experimental)Abstract:With the advent of Belle II and the LHCb upgrade, the precision measurements of various B-Physics observables are on cards. This holds significant potential for delving into physics beyond the standard model of electroweak interactions. These measurements can also serve as means to establish limits on phenomena occurring at much finer length scales, such as quantum decoherence, which may arise due to potential discreteness in space-time or non-trivial topological effects. In this work, we set up the formalism to investigate the impact of quantum decoherence on several potential observables in $B$ meson systems. The approach employs the trace-preserving Kraus operator formalism, extending unitary evolution to non-unitary dynamics while maintaining complete positivity. In this formalism, the decoherence effects are parametrized in terms of a single parameter. Through the analysis of purely leptonic, semileptonic, and non-leptonic decays of $B$ mesons, we identify observables that could, in principle, be influenced by decoherence. The theoretical expressions are provided without neglecting the impact of decay width difference ($\Delta \Gamma$) and $CP$ violation in mixing. Considering that many of these observables can be measured with high precision using the abundant data collected by LHCb and Belle II, our formalism can be applied to establish constraints on the decoherence parameter through multiple decay channels. This offers an alternative set-up for such studies, which, at present, are predominantly conducted in the neutrino sector.
Submission history
From: Neetu Raj Singh Chundawat [view email][v1] Sun, 4 Feb 2024 13:02:48 UTC (38 KB)
[v2] Thu, 4 Apr 2024 16:58:34 UTC (39 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.