Computer Science > Computational Complexity
[Submitted on 12 Feb 2024 (v1), last revised 21 Nov 2024 (this version, v2)]
Title:Detecting Low-Degree Truncation
View PDF HTML (experimental)Abstract:We consider the following basic, and very broad, statistical problem: Given a known high-dimensional distribution ${\cal D}$ over $\mathbb{R}^n$ and a collection of data points in $\mathbb{R}^n$, distinguish between the two possibilities that (i) the data was drawn from ${\cal D}$, versus (ii) the data was drawn from ${\cal D}|_S$, i.e. from ${\cal D}$ subject to truncation by an unknown truncation set $S \subseteq \mathbb{R}^n$.
We study this problem in the setting where ${\cal D}$ is a high-dimensional i.i.d. product distribution and $S$ is an unknown degree-$d$ polynomial threshold function (one of the most well-studied types of Boolean-valued function over $\mathbb{R}^n$). Our main results are an efficient algorithm when ${\cal D}$ is a hypercontractive distribution, and a matching lower bound:
$\bullet$ For any constant $d$, we give a polynomial-time algorithm which successfully distinguishes ${\cal D}$ from ${\cal D}|_S$ using $O(n^{d/2})$ samples (subject to mild technical conditions on ${\cal D}$ and $S$);
$\bullet$ Even for the simplest case of ${\cal D}$ being the uniform distribution over $\{+1, -1\}^n$, we show that for any constant $d$, any distinguishing algorithm for degree-$d$ polynomial threshold functions must use $\Omega(n^{d/2})$ samples.
Submission history
From: Shivam Nadimpalli [view email][v1] Mon, 12 Feb 2024 23:59:59 UTC (208 KB)
[v2] Thu, 21 Nov 2024 21:35:36 UTC (874 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.