High Energy Physics - Experiment
[Submitted on 21 Feb 2024 (v1), last revised 6 Mar 2024 (this version, v2)]
Title:End-to-end simulation of particle physics events with Flow Matching and generator Oversampling
View PDF HTML (experimental)Abstract:The simulation of high-energy physics collision events is a key element for data analysis at present and future particle accelerators. The comparison of simulation predictions to data allows looking for rare deviations that can be due to new phenomena not previously observed. We show that novel machine learning algorithms, specifically Normalizing Flows and Flow Matching, can be used to replicate accurate simulations from traditional approaches with several orders of magnitude of speed-up. The classical simulation chain starts from a physics process of interest, computes energy deposits of particles and electronics response, and finally employs the same reconstruction algorithms used for data. Eventually, the data are reduced to some high-level analysis format. Instead, we propose an end-to-end approach, simulating the final data format directly from physical generator inputs, skipping any intermediate steps. We use particle jets simulation as a benchmark for comparing both discrete and continuous Normalizing Flows models. The models are validated across a variety of metrics to identify the most accurate. We discuss the scaling of performance with the increase in training data, as well as the generalization power of these models on physical processes different from the training one. We investigate sampling multiple times from the same physical generator inputs, a procedure we name oversampling, and we show that it can effectively reduce the statistical uncertainties of a dataset. This class of ML algorithms is found to be capable of learning the expected detector response independently of the physical input process. Their speed and accuracy, coupled with the stability of the training procedure, make them a compelling tool for the needs of current and future experiments.
Submission history
From: Francesco Vaselli [view email][v1] Wed, 21 Feb 2024 10:38:25 UTC (5,262 KB)
[v2] Wed, 6 Mar 2024 16:05:31 UTC (5,267 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.