Astrophysics > Cosmology and Nongalactic Astrophysics
[Submitted on 1 Apr 2024 (v1), last revised 5 Nov 2024 (this version, v2)]
Title:Survival of Gas in Subhalos and Its Impact on the 21 cm Forest Signals: Insights from Hydrodynamic Simulations
View PDF HTML (experimental)Abstract:Understanding the survival of gas within subhalos under various astrophysical processes is crucial for elucidating cosmic structure formation and evolution. We study the resilience of gas in subhalos, focusing on the impact of tidal and ram pressure stripping through hydrodynamic simulations. Our results uncover significant gas stripping primarily driven by ram pressure effects, which also profoundly influence the gas distribution within these subhalos. Notably, despite their vulnerability to ram pressure effects, the low-mass subhalos can play a pivotal role in influencing the observable characteristics of cosmic structures due to their large abundance. Specifically, we explore the application of our findings to the 21 cm forest, showing how the survival dynamics of gas in subhalos can modulate the 21 cm optical depth, a key probe for detecting minihalos in the pre-reionization era. (abridged) In this work, we further investigate the contribution of subhalos to the 21 cm optical depth with hydrodynamics simulations, particularly highlighting the trajectories and fates of subhalos within mass ranges of \(10^{4-6} M_{\odot}h^{-1}\) in a host halo of \(10^7 M_{\odot}h^{-1}\). Despite their susceptibility to ram pressure stripping, the contribution of abundant low-mass subhalos to the 21-cm optical depth is more significant than that of their massive counterparts primarily due to their greater abundance. We find that the 21-cm optical depth can be increased by a factor of approximately two due to the abundant low-mass subhalos. (abridged) Our work provides critical insights into the gas dynamics within subhalos in the early Universe, highlighting their resilience against environmental stripping effects, and their impact on observable 21-cm signals.
Submission history
From: Genki Naruse [view email][v1] Mon, 1 Apr 2024 10:33:49 UTC (4,702 KB)
[v2] Tue, 5 Nov 2024 01:17:58 UTC (5,018 KB)
Current browse context:
astro-ph.CO
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.