Computer Science > Data Structures and Algorithms
[Submitted on 6 Apr 2024 (v1), last revised 22 Nov 2024 (this version, v3)]
Title:Fast and Simple Sorting Using Partial Information
View PDFAbstract:We consider the problem of sorting $n$ items, given the outcomes of $m$ pre-existing comparisons. We present a simple and natural deterministic algorithm that runs in $O(m+\log T)$ time and does $O(\log T)$ comparisons, where $T$ is the number of total orders consistent with the pre-existing comparisons.
Our running time and comparison bounds are best possible up to constant factors, thus resolving a problem that has been studied intensely since 1976 (Fredman, Theoretical Computer Science). The best previous algorithm with a bound of $O(\lg T)$ on the number of comparisons has a time bound of $O(n^{2.5})$ and is more complicated.
Our algorithm combines three classic algorithms: topological sort, heapsort with the right kind of heap, and efficient search in a sorted list. It outputs the items in sorted order one by one. It can be modified to stop early, thereby solving the important and more general top-$k$ sorting problem: Given $k$ and the outcomes of some pre-existing comparisons, output the smallest $k$ items in sorted order. The modified algorithm solves the top-$k$ sorting problem in minimum time and comparisons, to within constant factors.
Submission history
From: Richard Hladík [view email][v1] Sat, 6 Apr 2024 08:29:44 UTC (70 KB)
[v2] Mon, 22 Jul 2024 06:40:13 UTC (39 KB)
[v3] Fri, 22 Nov 2024 18:29:09 UTC (44 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.