Statistics > Machine Learning
[Submitted on 16 Apr 2024 (v1), last revised 21 Nov 2024 (this version, v2)]
Title:On the Use of Relative Validity Indices for Comparing Clustering Approaches
View PDFAbstract:Relative Validity Indices (RVIs) such as the Silhouette Width Criterion and Davies Bouldin indices are the most widely used tools for evaluating and optimising clustering outcomes. Traditionally, their ability to rank collections of candidate dataset partitions has been used to guide the selection of the number of clusters, and to compare partitions from different clustering algorithms. However, there is a growing trend in the literature to use RVIs when selecting a Similarity Paradigm (SP) for clustering - the combination of normalisation procedure, representation method, and distance measure which affects the computation of object dissimilarities used in clustering. Despite the growing prevalence of this practice, there has been no empirical or theoretical investigation into the suitability of RVIs for this purpose. Moreover, since RVIs are computed using object dissimilarities, it remains unclear how they would need to be implemented for fair comparisons of different SPs. This study presents the first comprehensive investigation into the reliability of RVIs for SP selection. We conducted extensive experiments with seven popular RVIs on over 2.7 million clustering partitions of synthetic and real-world datasets, encompassing feature-vector and time-series data. We identified fundamental conceptual limitations undermining the use of RVIs for SP selection, and our empirical findings confirmed this predicted unsuitability. Among our recommendations, we suggest instead that practitioners select SPs by using external validation on high quality labelled datasets or carefully designed outcome-oriented objective criteria, both of which should be informed by careful consideration of dataset characteristics, and domain requirements. Our findings have important implications for clustering methodology and evaluation, suggesting the need for more rigorous approaches to SP selection.
Submission history
From: Luke Yerbury [view email][v1] Tue, 16 Apr 2024 07:39:54 UTC (36,910 KB)
[v2] Thu, 21 Nov 2024 00:57:22 UTC (6,781 KB)
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.