Mathematics > Numerical Analysis
[Submitted on 25 Apr 2024 (v1), last revised 20 Nov 2024 (this version, v3)]
Title:Fast Machine-Precision Spectral Likelihoods for Stationary Time Series
View PDF HTML (experimental)Abstract:We provide in this work an algorithm for approximating a very broad class of symmetric Toeplitz matrices to machine precision in $\mathcal{O}(n \log n)$ time with applications to fitting time series models. In particular, for a symmetric Toeplitz matrix $\mathbf{\Sigma}$ with values $\mathbf{\Sigma}_{j,k} = h_{|j-k|} = \int_{-1/2}^{1/2} e^{2 \pi i |j-k| \omega} S(\omega) \mathrm{d} \omega$ where $S(\omega)$ is piecewise smooth, we give an approximation $\mathbf{\mathcal{F}} \mathbf{\Sigma} \mathbf{\mathcal{F}}^H \approx \mathbf{D} + \mathbf{U} \mathbf{V}^H$, where $\mathbf{\mathcal{F}}$ is the DFT matrix, $\mathbf{D}$ is diagonal, and the matrices $\mathbf{U}$ and $\mathbf{V}$ are in $\mathbb{C}^{n \times r}$ with $r \ll n$. Studying these matrices in the context of time series, we offer a theoretical explanation of this structure and connect it to existing spectral-domain approximation frameworks. We then give a complete discussion of the numerical method for assembling the approximation and demonstrate its efficiency for improving Whittle-type likelihood approximations, including dramatic examples where a correction of rank $r = 2$ to the standard Whittle approximation increases the accuracy of the log-likelihood approximation from $3$ to $14$ digits for a matrix $\mathbf{\Sigma} \in \mathbb{R}^{10^5 \times 10^5}$. The method and analysis of this work applies well beyond time series analysis, providing an algorithm for extremely accurate solutions to linear systems with a wide variety of symmetric Toeplitz matrices whose entries are generated by a piecewise smooth $S(\omega)$. The analysis employed here largely depends on asymptotic expansions of oscillatory integrals, and also provides a new perspective on when existing spectral-domain approximation methods for Gaussian log-likelihoods can be particularly problematic.
Submission history
From: Christopher Geoga [view email][v1] Thu, 25 Apr 2024 12:58:57 UTC (103 KB)
[v2] Fri, 10 May 2024 22:35:12 UTC (70 KB)
[v3] Wed, 20 Nov 2024 21:26:10 UTC (96 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.