Astrophysics > Solar and Stellar Astrophysics
[Submitted on 16 May 2024 (v1), last revised 16 Jul 2024 (this version, v2)]
Title:Solar Models and Astrophysical S-factors Constrained by Helioseismic Results and Updated Neutrino Fluxes
View PDF HTML (experimental)Abstract:The ratio of metal abundance to hydrogen abundance of the solar photosphere, $(Z/X)_{s}$, has been revised several times. Standard solar models, based on these revised solar abundances, are in disagreement with seismically inferred results. Recently, Magg et al. introduced a new value for $(Z/X)_{s}$, which is still in debate in the community. The solar abundance problem or solar modeling problem remains a topic of ongoing debate. We constructed rotating solar models in accordance with various abundance scales where the effects of convection overshoot and enhanced diffusion were included. Among these models, those utilizing Magg's abundance scale exhibit superior sound-speed and density profiles compared to models using other abundance scales. Additionally, they reproduce the observed frequency separation ratios $r_{02}$ and $r_{13}$. These models also match the seismically inferred surface helium abundance and convection zone depth within $1\sigma$ level. Furthermore, the calculated neutrino fluxes from these models agree with detected ones at the level of $1\sigma$. We found that neutrino fluxes and density profile are influenced by nuclear reactions, allowing us to use the combination of detected neutrino fluxes and seismically inferred density for diagnosing astrophysical $S$-factors. This diagnostic approach shows that $S_{11}$ may be underestimated by $2\%$, while $S_{33}$ may be overestimated by about $3\%$ in previous determinations. The $S$-factors favored by updated neutrino fluxes and helioseismic results can lead to significant improvements in solar models.
Submission history
From: Wuming Yang [view email][v1] Thu, 16 May 2024 23:52:37 UTC (462 KB)
[v2] Tue, 16 Jul 2024 09:55:24 UTC (462 KB)
Current browse context:
astro-ph.SR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.