Quantum Physics
[Submitted on 3 Jun 2024 (v1), last revised 21 Nov 2024 (this version, v2)]
Title:Decoupling of External and Internal Dynamics in Driven Two-level Systems
View PDF HTML (experimental)Abstract:We show how a laser driven two-level system including quantized external degrees of freedom for each state can be decoupled into a set of oscillator equations acting only on the external degrees of freedom with operator valued damping representing the detuning. We give a way of characterizing the solvability of this family of problems by appealing to a classical oscillator with time-dependent damping. As a consequence of this classification we (a) obtain analytic and representation-free expressions for Rabi oscillations including external degrees of freedom with and without an external linear potential, (b) show that whenever the detuning operator can be diagonalized (analytically or numerically) the problem decomposes into a set of classical equations and (c) we can use the oscillator equations as a perturbative basis to describe Rabi oscillations in weak but otherwise arbitrary external potentials. Moreover, chirping of the driving fields phase emerges naturally as a means of compensating the Ehrenfest/mean-value part of the detuning operator's dynamics while the presence of driving phase noise leads to a stochastic evolution equation of Langevin type. Lastly, our approach is representation free with respect to the external degrees of freedom and as consequence a suitable representation or basis expansion can be chosen a posteriori depending on the desired application at hand.
Submission history
From: Samuel Böhringer [view email][v1] Mon, 3 Jun 2024 16:42:28 UTC (14,956 KB)
[v2] Thu, 21 Nov 2024 09:35:53 UTC (1,245 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.