Computer Science > Social and Information Networks
[Submitted on 25 Jun 2024 (v1), last revised 14 Nov 2024 (this version, v3)]
Title:Fairness in Social Influence Maximization via Optimal Transport
View PDF HTML (experimental)Abstract:We study fairness in social influence maximization, whereby one seeks to select seeds that spread a given information throughout a network, ensuring balanced outreach among different communities (e.g. demographic groups). In the literature, fairness is often quantified in terms of the expected outreach within individual communities. In this paper, we demonstrate that such fairness metrics can be misleading since they overlook the stochastic nature of information diffusion processes. When information diffusion occurs in a probabilistic manner, multiple outreach scenarios can occur. As such, outcomes such as ``In 50\% of the cases, no one in group 1 gets the information, while everyone in group 2 does, and in the other 50%, it is the opposite'', which always results in largely unfair outcomes, are classified as fair by a variety of fairness metrics in the literature. We tackle this problem by designing a new fairness metric, mutual fairness, that captures variability in outreach through optimal transport theory. We propose a new seed-selection algorithm that optimizes both outreach and mutual fairness, and we show its efficacy on several real datasets. We find that our algorithm increases fairness with only a minor decrease (and at times, even an increase) in efficiency.
Submission history
From: Shubham Chowdhary [view email][v1] Tue, 25 Jun 2024 17:24:01 UTC (20,519 KB)
[v2] Thu, 31 Oct 2024 21:50:24 UTC (2,081 KB)
[v3] Thu, 14 Nov 2024 15:13:28 UTC (2,081 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.