Computer Science > Networking and Internet Architecture
[Submitted on 23 May 2024 (v1), last revised 21 Nov 2024 (this version, v2)]
Title:PandORA: Automated Design and Comprehensive Evaluation of Deep Reinforcement Learning Agents for Open RAN
View PDF HTML (experimental)Abstract:The highly heterogeneous ecosystem of NextG wireless communication systems calls for novel networking paradigms where functionalities and operations can be dynamically and optimally reconfigured in real time to adapt to changing traffic conditions and satisfy stringent and diverse QoS demands. Open RAN technologies, and specifically those being standardized by the O-RAN Alliance, make it possible to integrate network intelligence into the once monolithic RAN via intelligent applications, namely, xApps and rApps. These applications enable flexible control of the network resources and functionalities, network management, and orchestration through data-driven intelligent control loops. Recent work has showed how DRL is effective in dynamically controlling O-RAN systems. However, how to design these solutions in a way that manages heterogeneous optimization goals and prevents unfair resource allocation is still an open challenge, with the logic within DRL agents often considered as a black box. In this paper, we introduce PandORA, a framework to automatically design and train DRL agents for Open RAN applications, package them as xApps and evaluate them in the Colosseum wireless network emulator. We benchmark $23$ xApps that embed DRL agents trained using different architectures, reward design, action spaces, and decision-making timescales, and with the ability to hierarchically control different network parameters. We test these agents on the Colosseum testbed under diverse traffic and channel conditions, in static and mobile setups. Our experimental results indicate how suitable fine-tuning of the RAN control timers, as well as proper selection of reward designs and DRL architectures can boost network performance according to the network conditions and demand. Notably, finer decision-making granularities can improve mMTC's performance by ~56% and even increase eMBB Throughput by ~99%.
Submission history
From: Maria Tsampazi [view email][v1] Thu, 23 May 2024 18:45:09 UTC (31,582 KB)
[v2] Thu, 21 Nov 2024 20:44:06 UTC (31,582 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.