Condensed Matter > Materials Science
[Submitted on 22 Aug 2024 (v1), last revised 21 Nov 2024 (this version, v2)]
Title:Time series forecasting of multiphase microstructure evolution using deep learning
View PDF HTML (experimental)Abstract:Microstructure evolution, which plays a critical role in determining materials properties, is commonly simulated by the high-fidelity but computationally expensive phase-field method. To address this, we approximate microstructure evolution as a time series forecasting problem within the domain of deep learning. Our approach involves implementing a cost-effective surrogate model that accurately predicts the spatiotemporal evolution of microstructures, taking an example of spinodal decomposition in binary and ternary mixtures. Our surrogate model combines a convolutional autoencoder to reduce the dimensional representation of these microstructures with convolutional recurrent neural networks to forecast their temporal evolution. We use different variants of recurrent neural networks to compare their efficacy in developing surrogate models for phase-field predictions. On average, our deep learning framework demonstrates excellent accuracy and speedup relative to the "ground truth" phase-field simulations. We use quantitative measures to demonstrate how surrogate model predictions can effectively replace the phase-field timesteps without compromising accuracy in predicting the long-term evolution trajectory. Additionally, by emulating a transfer learning approach, our framework performs satisfactorily in predicting new microstructures resulting from alloy composition and physics unknown to the model. Therefore, our approach offers a useful data-driven alternative and accelerator to the materials microstructure simulation workflow.
Submission history
From: Supriyo Ghosh [view email][v1] Thu, 22 Aug 2024 06:14:06 UTC (16,902 KB)
[v2] Thu, 21 Nov 2024 11:32:58 UTC (10,129 KB)
Current browse context:
cond-mat.mtrl-sci
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.