High Energy Physics - Phenomenology
[Submitted on 6 Sep 2024 (v1), last revised 13 Sep 2024 (this version, v2)]
Title:The next frontiers for magnetic monopole searches
View PDF HTML (experimental)Abstract:Magnetic monopoles (MMs) are well-motivated hypothetical particles whose discovery would symmetrize Maxwell equations, explain quantization of electric charge, and probe the gauge structure of the unified theory. Recent models predict MMs with low masses, reinvigorating searches at colliders. However, most theories predict composite MMs, whose production in parton-parton collisions is expected to be suppressed. The Schwinger process, whereby MM pairs tunnel through the vacuum barrier in the presence of a strong magnetic field, is not subject to this limitation. Additionally, the Schwinger cross section can be calculated nonperturbatively. Together, these make it a golden channel for low-mass MM searches. We investigate the Schwinger production of MMs in heavy-ion collisions at future colliders, in collisions of cosmic rays with the atmosphere, and in decay of magnetic fields of cosmic origin. We find that a next-generation collider would provide the best sensitivity. At the same time, exploiting the infrastructure of industrial ore extraction and Antarctic ice drilling could advance the field at a faster timescale and with only a modest investment. We also propose deploying dedicated MM detectors in conjunction with cosmic ray observatories to directly investigate if the unexplained, highest energy cosmic rays are MMs. Together, the proposed efforts would define the field of MM searches in the next decades.
Submission history
From: Igor Ostrovskiy [view email][v1] Fri, 6 Sep 2024 18:26:55 UTC (4,343 KB)
[v2] Fri, 13 Sep 2024 18:55:05 UTC (4,346 KB)
Current browse context:
hep-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.