Physics > Instrumentation and Detectors
[Submitted on 8 Oct 2024 (v1), last revised 16 Oct 2024 (this version, v2)]
Title:Design and Experimental Application of a Radon Diffusion Chamber for Determining Diffusion Coefficients in Membrane Materials
View PDFAbstract:In recent years, the issue of radon emanation and diffusion has become a critical concern for rare decay experiments, such as JUNO and PandaX-4T. This paper introduces a detector design featuring a symmetric radon detector cavity for the quantitative assessment of membrane materials' radon blocking capabilities. The performance of this design is evaluated through the application of Fick's Law and the diffusion equation considering material solubility. Our detector has completed measurements of radon diffusion coefficients for four types of membrane materials currently used in experiments, which also confirms the rationality of this detector design. The findings are instrumental in guiding the selection and evaluation of optimal materials for radon shielding to reduce radon background, contributing to boost sensitivities of rare event research.
Submission history
From: Yue Meng [view email][v1] Tue, 8 Oct 2024 13:55:35 UTC (19,723 KB)
[v2] Wed, 16 Oct 2024 07:30:57 UTC (17,197 KB)
Current browse context:
physics.ins-det
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.