Computer Science > Machine Learning
[Submitted on 22 Oct 2024 (v1), last revised 22 Nov 2024 (this version, v2)]
Title:Just In Time Transformers
View PDF HTML (experimental)Abstract:Precise energy load forecasting in residential households is crucial for mitigating carbon emissions and enhancing energy efficiency; indeed, accurate forecasting enables utility companies and policymakers, who advocate sustainable energy practices, to optimize resource utilization. Moreover, smart meters provide valuable information by allowing for granular insights into consumption patterns. Building upon available smart meter data, our study aims to cluster consumers into distinct groups according to their energy usage behaviours, effectively capturing a diverse spectrum of consumption patterns. Next, we design JITtrans (Just In Time transformer), a novel transformer deep learning model that significantly improves energy consumption forecasting accuracy, with respect to traditional forecasting methods. Extensive experimental results validate our claims using proprietary smart meter data. Our findings highlight the potential of advanced predictive technologies to revolutionize energy management and advance sustainable power systems: the development of efficient and eco-friendly energy solutions critically depends on such technologies.
Submission history
From: Massimo Cafaro [view email][v1] Tue, 22 Oct 2024 10:33:00 UTC (1,781 KB)
[v2] Fri, 22 Nov 2024 17:47:37 UTC (1,775 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.