Condensed Matter > Strongly Correlated Electrons
[Submitted on 1 Nov 2024]
Title:Optical absorptions activated by an ultrashort halfcycle pulse in metallic and superconducting states of the Hubbard model
View PDF HTML (experimental)Abstract:The development of high-intensity ultrashort laser pulses unlocks the potential of pump-probe spectroscopy in sub-femtosecond timescale. Notably, subcycle pump pulses can generate electronic states unreachable by conventional multicycle pulses, leading to a phenomenon that we refer to as subcycle-pulse engineering. In this study, we employ the time-dependent density-matrix renormalization group method to unveil the transient absorption spectra of superconducting and metallic states in nearly half-filled one-dimensional and two-dimensional Hubbard models excited by an ultrashort halfcycle pulse, which can induce a current with inversion-symmetry breaking. In a superconducting state realized in attractive on-site interactions, we find the transient activation of absorptions at energies corresponding to the amplitude modes of superconducting and charge-density-wave states. On the other hand, in a metallic state realized in the two-dimensional model with repulsive on-site interactions, we obtain another type of absorption enhancements, which are distributed broadly in spin excitation energies. These findings indicate that superconducting and metallic states are sensitive to an ultrashort halfcycle pulse, leading to the transient activations of optical absorptions with their respective mechanisms.
Current browse context:
cond-mat.str-el
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.