Condensed Matter > Materials Science
[Submitted on 2 Nov 2024]
Title:Pyridyl-functionalized tripod molecules on Au(111): Interplay between H-bonding and metal coordination
View PDF HTML (experimental)Abstract:The self-assembly of pyridyl-functionalized triazine (T4PT) was studied on Au(111) using low-temperature scanning tunneling microscopy (STM) under ultra-high vacuum conditions combined with density functional theory (DFT) calculations. In particular, we investigated the effect of temperature on the intermolecular interactions within the assemblies. STM measurements revealed that T4PT molecules form a well-ordered, close-packed structure, with the molecules adopting a planar conformation parallel to the Au surface for coverages $\leq1$ monolayer upon room temperature deposition. The intermolecular interactions stabilizing the self-assembled arrangement is based on a combination of hydrogen bonding and weak van der Waals forces. Upon post-deposition annealing, the assemblies are additionally stabilized by metal-ligand bonding between the pyridyl ligands and native Au adatoms. Further post-deposition annealing at temperatures above $200^{\circ}$C led to the breaking of the N-Au bonds with the molecular assemblies transforming into a second close-packed hydrogen bonded structure. For temperatures exceeding $230^{\circ}$C, few covalently linked dimers formed, most likely as a result of CH-bond activation. We rationalize the kinetically-driven structure formation by unveiling the interaction strengths of the bonding motifs using DFT and compare the molecular conformation to the structurally similar pyridyl-functionalized benzene (T4PB).
Current browse context:
cond-mat.mtrl-sci
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.