Condensed Matter > Materials Science
[Submitted on 4 Nov 2024]
Title:Single-layer spin-orbit-torque magnetization switching due to spin Berry curvature generated by minute spontaneous atomic displacement in a Weyl oxide
View PDFAbstract:Spin Berry curvature characterizes the band topology as the spin counterpart of Berry curvature and is crucial in generating novel spintronics functionalities. By breaking the crystalline inversion symmetry, the spin Berry curvature is expected to be significantly enhanced; this enhancement will increase the intrinsic spin Hall effect in ferromagnetic materials and, thus, the spin-orbit torques (SOTs). However, this intriguing approach has not been applied to devices; generally, the extrinsic spin Hall effect in ferromagnet/heavy-metal bilayer is used for SOT magnetization switching. Here, SOT-induced partial magnetization switching is demonstrated in a single layer of a single-crystalline Weyl oxide SrRuO3 (SRO) with a small current density of ~3.1{\times}10^6 A cm-2. Detailed analysis of the crystal structure in the seemingly perfect periodic lattice of the SRO film reveals barely discernible oxygen octahedral rotations with angles of ~5° near the interface with a substrate. Tight-binding calculations indicate that a large spin Hall conductivity is induced around small gaps generated at band crossings by the synergy of inherent spin-orbit coupling and band inversion due to the rotations, causing magnetization reversal. Our results indicate that a minute atomic displacement in single-crystal films can induce strong intrinsic SOTs that are useful for spin-orbitronics devices.
Current browse context:
cond-mat.mtrl-sci
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.