Condensed Matter > Materials Science
[Submitted on 4 Nov 2024]
Title:Quench switching of Mn2As
View PDF HTML (experimental)Abstract:We demonstrate that epitaxial thin film antiferromagnet Mn2As exhibits the quench-switching effect, which was previously reported only in crystallographically similar antiferromagnetic CuMnAs thin films. Quench switching in Mn2As shows stronger increase in resistivity, reaching hundreds of percent at 5K, and significantly longer retention time of the metastable high-resistive state before relaxation towards the low-resistive uniform magnetic state. Qualitatively, Mn2As and CuMnAs show analogous parametric dependence of the magnitude and relaxation of the quench-switching signal. Quantitatively, relaxation dynamics in both materials show direct proportionality to the Néel temperature. This confirms that the quench switching has magnetic origin in both materials. The presented results suggest that the antiferromagnets crystalizing in the Cu2Sb structure are well suited for exploring and exploiting the intriguing physics of highly non-uniform magnetic states associated with the quench switching.
Current browse context:
cond-mat.mtrl-sci
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.