Condensed Matter > Materials Science
[Submitted on 4 Nov 2024]
Title:$\textit{Ab initio}$ correlated calculations without finite basis-set error: Numerically precise all-electron RPA correlation energies for diatomic molecules
View PDF HTML (experimental)Abstract:In wavefunction-based $\textit{ab-initio}$ quantum mechanical calculations, achieving absolute convergence with respect to the one-electron basis set is a long-standing challenge. In this work, using the random phase approximation (RPA) electron correlation energy as an example, we show how to compute the basis-error-free RPA correlation energy for diatomic molecules by iteratively solving the Sternheimer equations for first-order wave functions in the prolate spheroidal coordinate system. Our approach provides RPA correlation energies across the periodic table to any desired precision; in practice, the convergence of the absolute RPA energies to the meV-level accuracy can be readily attained. Our method thus provides unprecedented reference numbers that can be used to assess the reliability of the commonly used computational procedures in quantum chemistry, such as the counterpoise correction to the basis set superposition errors, the frozen-core approximation, and the complete-basis-set extrapolation scheme. Such reference results can also be used to guide the development of more efficient correlation-consistent basis sets. The numerical techniques developed in the present work also have direct implications for the development of basis error-free schemes for the GW method or the \textit{ab initio} quantum chemistry methods such as MP2.
Current browse context:
cond-mat.mtrl-sci
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.