Economics > General Economics
[Submitted on 5 Nov 2024 (v1), last revised 21 Nov 2024 (this version, v2)]
Title:Adaptive Shock Compensation in the Multi-layer Network of Global Food Production and Trade
View PDF HTML (experimental)Abstract:Global food production and trade networks are highly dynamic, especially in response to shortages when countries adjust their supply strategies. In this study, we examine adjustments across 123 agri-food products from 192 countries resulting in 23616 individual scenarios of food shortage, and calibrate a multi-layer network model to understand the propagation of the shocks. We analyze shock mitigation actions, such as increasing imports, boosting production, or substituting food items. Our findings indicate that these lead to spillover effects potentially exacerbating food inequality: an Indian rice shock resulted in a 5.8 % increase in rice losses in countries with a low Human Development Index (HDI) and a 14.2 % decrease in those with a high HDI. Considering multiple interacting shocks leads to super-additive losses of up to 12 % of the total available food volume across the global food production network. This framework allows us to identify combinations of shocks that pose substantial systemic risks and reduce the resilience of the global food supply.
Submission history
From: Sophia Baum [view email][v1] Tue, 5 Nov 2024 20:31:23 UTC (2,664 KB)
[v2] Thu, 21 Nov 2024 13:35:08 UTC (2,664 KB)
Current browse context:
econ.GN
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.