Condensed Matter > Statistical Mechanics
[Submitted on 9 Nov 2024]
Title:Thermal lifetime of breathers
View PDF HTML (experimental)Abstract:In this article, we explore the lifetime of localized excitations in nonlinear lattices, called breathers, when a thermalized lattice is perturbed with localized energy delivered to a single site. We develop a method to measure the time it takes for the system to approach equilibrium based on a single scalar quantity, the participation number, and deduce the value corresponding to thermal equilibrium. We observe the time to achieve thermalization as a function of the energy of the excited site. We explore a variety of different physical system models. The result is that the lifetime of breathers increases exponentially with the breather energy for all the systems. These results may provide a method to detect the existence of breathers in real systems.
Submission history
From: Juan F. R. Archilla [view email][v1] Sat, 9 Nov 2024 02:47:18 UTC (2,492 KB)
Current browse context:
cond-mat.stat-mech
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.