Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 10 Nov 2024]
Title:CASC: Condition-Aware Semantic Communication with Latent Diffusion Models
View PDF HTML (experimental)Abstract:Diffusion-based semantic communication methods have shown significant advantages in image transmission by harnessing the generative power of diffusion models. However, they still face challenges, including generation randomness that leads to distorted reconstructions and high computational costs. To address these issues, we propose CASC, a condition-aware semantic communication framework that incorporates a latent diffusion model (LDM)-based denoiser. The LDM denoiser at the receiver utilizes the received noisy latent codes as the conditioning signal to reconstruct the latent codes, enabling the decoder to accurately recover the source image. By operating in the latent space, the LDM reduces computational complexity compared to traditional diffusion models (DMs). Additionally, we introduce a condition-aware neural network (CAN) that dynamically adjusts the weights in the hidden layers of the LDM based on the conditioning signal. This enables finer control over the generation process, significantly improving the perceptual quality of the reconstructed images. Experimental results show that CASC significantly outperforms DeepJSCC in both perceptual quality and visual effect. Moreover, CASC reduces inference time by 51.7% compared to existing DM-based semantic communication systems, while maintaining comparable perceptual performance. The ablation studies also validate the effectiveness of the CAN module in improving the image reconstruction quality.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.