Mathematics > Numerical Analysis
[Submitted on 11 Nov 2024]
Title:Re-anchoring Quantum Monte Carlo with Tensor-Train Sketching
View PDF HTML (experimental)Abstract:We propose a novel algorithm for calculating the ground-state energy of quantum many-body systems by combining auxiliary-field quantum Monte Carlo (AFQMC) with tensor-train sketching. In AFQMC, having a good trial wavefunction to guide the random walk is crucial for avoiding sign problems. Typically, this trial wavefunction is fixed throughout the simulation. Our proposed method iterates between determining a new trial wavefunction in the form of a tensor train, derived from the current walkers, and using this updated trial wavefunction to anchor the next phase of AFQMC. Numerical results demonstrate that our algorithm is highly accurate for large spin systems, achieving a relative error of \(10^{-5}\) in estimating ground-state energies. Additionally, the overlap between our estimated trial wavefunction and the ground-state wavefunction achieves a high-fidelity. We provide a convergence proof, highlighting how an effective trial wavefunction can reduce the variance in the AFQMC energy estimate.
Current browse context:
math.NA
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.