Computer Science > Cryptography and Security
[Submitted on 12 Nov 2024]
Title:SecEncoder: Logs are All You Need in Security
View PDF HTML (experimental)Abstract:Large and Small Language Models (LMs) are typically pretrained using extensive volumes of text, which are sourced from publicly accessible platforms such as Wikipedia, Book Corpus, or through web scraping. These models, due to their exposure to a wide range of language data, exhibit impressive generalization capabilities and can perform a multitude of tasks simultaneously. However, they often fall short when it comes to domain-specific tasks due to their broad training data. This paper introduces SecEncoder, a specialized small language model that is pretrained using security logs. SecEncoder is designed to address the domain-specific limitations of general LMs by focusing on the unique language and patterns found in security logs. Experimental results indicate that SecEncoder outperforms other LMs, such as BERTlarge, DeBERTa-v3-large and OpenAI's Embedding (textembedding-ada-002) models, which are pretrained mainly on natural language, across various tasks. Furthermore, although SecEncoder is primarily pretrained on log data, it outperforms models pretrained on natural language for a range of tasks beyond log analysis, such as incident prioritization and threat intelligence document retrieval. This suggests that domain specific pretraining with logs can significantly enhance the performance of LMs in security. These findings pave the way for future research into security-specific LMs and their potential applications.
Submission history
From: Muhammed Fatih Bulut [view email][v1] Tue, 12 Nov 2024 03:56:07 UTC (405 KB)
Current browse context:
cs.CR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.