Electrical Engineering and Systems Science > Systems and Control
[Submitted on 12 Nov 2024]
Title:Optimizing Traffic Signal Control using High-Dimensional State Representation and Efficient Deep Reinforcement Learning
View PDFAbstract:In reinforcement learning-based (RL-based) traffic signal control (TSC), decisions on the signal timing are made based on the available information on vehicles at a road intersection. This forms the state representation for the RL environment which can either be high-dimensional containing several variables or a low-dimensional vector. Current studies suggest that using high dimensional state representations does not lead to improved performance on TSC. However, we argue, with experimental results, that the use of high dimensional state representations can, in fact, lead to improved TSC performance with improvements up to 17.9% of the average waiting time. This high-dimensional representation is obtainable using the cost-effective vehicle-to-infrastructure (V2I) communication, encouraging its adoption for TSC. Additionally, given the large size of the state, we identified the need to have computational efficient models and explored model compression via pruning.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.