Economics > Econometrics
[Submitted on 12 Nov 2024]
Title:Matching $\leq$ Hybrid $\leq$ Difference in Differences
View PDF HTML (experimental)Abstract:Since LaLonde's (1986) seminal paper, there has been ongoing interest in estimating treatment effects using pre- and post-intervention data. Scholars have traditionally used experimental benchmarks to evaluate the accuracy of alternative econometric methods, including Matching, Difference-in-Differences (DID), and their hybrid forms (e.g., Heckman et al., 1998b; Dehejia and Wahba, 2002; Smith and Todd, 2005). We revisit these methodologies in the evaluation of job training and educational programs using four datasets (LaLonde, 1986; Heckman et al., 1998a; Smith and Todd, 2005; Chetty et al., 2014a; Athey et al., 2020), and show that the inequality relationship, Matching $\leq$ Hybrid $\leq$ DID, appears as a consistent norm, rather than a mere coincidence. We provide a formal theoretical justification for this puzzling phenomenon under plausible conditions such as negative selection, by generalizing the classical bracketing (Angrist and Pischke, 2009, Section 5). Consequently, when treatments are expected to be non-negative, DID tends to provide optimistic estimates, while Matching offers more conservative ones. Keywords: bias, difference in differences, educational program, job training program, matching.
Current browse context:
econ.EM
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.