High Energy Physics - Theory
[Submitted on 12 Nov 2024]
Title:Schwinger-Keldysh effective action for hydrodynamics with approximate symmetries
View PDF HTML (experimental)Abstract:We study the hydrodynamic theories with approximate symmetries in the recently developed effective action approach on the Schwinger-Keldysh (SK) contour. We employ the method of spurious symmetry transformation for small explicit symmetry-breaking parameters to systematically constrain symmetry-breaking effects in the non-equilibrium effective action for hydrodynamics. We apply our method to the hydrodynamic theory of chiral symmetry in Quantum Chromodynamics (QCD) at finite temperature and density and its explicit breaking by quark masses. We show that the spurious symmetry and the Kubo-Martin-Schwinger (KMS) relation dictate that the Ward-Takahashi identity for the axial symmetry, i.e., the partial conservation of axial vector current (PCAC) relation, contains a relaxational term proportional to the axial chemical potential, whose kinetic coefficient is at least of the second order in the quark mass. In the phase where the chiral symmetry is spontaneously broken, and the pseudo-Nambu-Goldstone pions appear as hydrodynamic variables, this relaxation effect is subleading compared to the conventional pion mass term in the PCAC relation, which is of the first order in the quark mass. On the other hand, in the chiral symmetry-restored phase, we show that our relaxation term, which is of the second order in the quark mass, becomes the leading contribution to the axial charge relaxation. Therefore, the leading axial charge relaxation mechanism is parametrically different in the quark mass across a chiral phase transition.
Current browse context:
hep-th
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.