Computer Science > Machine Learning
[Submitted on 3 Nov 2024]
Title:Equitable Length of Stay Prediction for Patients with Learning Disabilities and Multiple Long-term Conditions Using Machine Learning
View PDF HTML (experimental)Abstract:People with learning disabilities have a higher mortality rate and premature deaths compared to the general public, as reported in published research in the UK and other countries. This study analyses hospitalisations of 9,618 patients identified with learning disabilities and long-term conditions for the population of Wales using electronic health record (EHR) data sources from the SAIL Databank. We describe the demographic characteristics, prevalence of long-term conditions, medication history, hospital visits, and lifestyle history for our study cohort, and apply machine learning models to predict the length of hospital stays for this cohort. The random forest (RF) model achieved an Area Under the Curve (AUC) of 0.759 (males) and 0.756 (females), a false negative rate of 0.224 (males) and 0.229 (females), and a balanced accuracy of 0.690 (males) and 0.689 (females). After examining model performance across ethnic groups, two bias mitigation algorithms (threshold optimization and the reductions algorithm using an exponentiated gradient) were applied to minimise performance discrepancies. The threshold optimizer algorithm outperformed the reductions algorithm, achieving lower ranges in false positive rate and balanced accuracy for the male cohort across the ethnic groups. This study demonstrates the potential of applying machine learning models with effective bias mitigation approaches on EHR data sources to enable equitable prediction of hospital stays by addressing data imbalances across groups.
Submission history
From: Emeka Abakasanga Godswill [view email][v1] Sun, 3 Nov 2024 20:14:20 UTC (3,563 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.