Condensed Matter > Strongly Correlated Electrons
[Submitted on 12 Nov 2024]
Title:Accurate Electron-phonon Interactions from Advanced Density Functional Theory
View PDF HTML (experimental)Abstract:Electron-phonon coupling (EPC) is key for understanding many properties of materials such as superconductivity and electric resistivity. Although first principles density-functional-theory (DFT) based EPC calculations are used widely, their efficacy is limited by the accuracy and efficiency of the underlying exchange-correlation functionals. These limitations become exacerbated in complex $d$- and $f$-electron materials, where beyond-DFT approaches and empirical corrections, such as the Hubbard $U$, are commonly invoked. Here, using the examples of CoO and NiO, we show how the efficient r2scan density functional correctly captures strong EPC effects in transition-metal oxides without requiring the introduction of empirical parameters. We also demonstrate the ability of r2scan to accurately model phonon-mediated superconducting properties of the main group compounds (e.g., MgB$_2$), with improved electronic bands and phonon dispersions over those of traditional density functionals. Our study provides a pathway for extending the scope of accurate first principles modeling of electron-phonon interactions to encompass complex $d$-electron materials.
Current browse context:
cond-mat.str-el
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.