High Energy Physics - Theory
[Submitted on 13 Nov 2024]
Title:Local Operator Algebras of Charged States in Gauge Theory and Gravity
View PDF HTML (experimental)Abstract:Powerful techniques have been developed in quantum field theory that employ algebras of local operators, yet local operators cannot create physical charged states in gauge theory or physical nonzero-energy states in perturbative quantum gravity. A common method to obtain physical operators out of local ones is to dress the latter using appropriate Wilson lines. This procedure destroys locality, it must be done case by case for each charged operator in the algebra, and it rapidly becomes cumbersome, particularly in perturbative quantum gravity.
In this paper we present an alternative approach to the definition of physical charged operators: we define an automorphism that maps an algebra of local charged operators into a (non-local) algebra of physical charged operators. The automorphism is described by a formally unitary intertwiner mapping the exact BRS operator associated to the gauge symmetry into its quadratic part.
The existence of an automorphism between local operators and the physical ones, describing charged states, allows to retain many of the results derived in local operator algebras and extend them to the physical-but-nonlocal algebra of charged operators as we discuss in some simple applications of our construction. We also discuss a formal construction of physical states and possible obstructions to it.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.