Astrophysics > Astrophysics of Galaxies
[Submitted on 14 Nov 2024]
Title:Fuzzy Gasoline: Cosmological hydrodynamical simulations of dwarf galaxy formation with Fuzzy Dark Matter
View PDF HTML (experimental)Abstract:We present the first set of high-resolution, hydrodynamical cosmological simulations of galaxy formation in a Fuzzy Dark Matter (FDM) framework. These simulations were performed with a new version of the GASOLINE2 code, known as FUZZY-GASOLINE, which can simulate quantum FDM effects alongside a comprehensive baryonic model that includes metal cooling, star formation, supernova feedback, and black hole physics, previously used in the NIHAO simulation suite. Using thirty zoom-in simulations of galaxies with halo masses in the range $10^9 \lesssim M_{\text{halo}}/M_{\odot} \lesssim 10^{11}$, we explore how the interplay between FDM quantum potential and baryonic processes influences dark matter distributions and observable galaxy properties. Our findings indicate that both baryons and low-mass FDM contribute to core formation within dark matter profiles, though through distinct mechanisms: FDM-induced cores emerge in all haloes, particularly within low-mass systems at high redshift, while baryon-driven cores form within a specific mass range and at low redshift. Despite these significant differences in dark matter structure, key stellar observables such as star formation histories and velocity dispersion profiles remain remarkably similar to predictions from the Cold Dark Matter (CDM) model, making it challenging to distinguish between CDM and FDM solely through stellar observations.
Current browse context:
astro-ph.GA
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.