Physics > Plasma Physics
[Submitted on 15 Nov 2024]
Title:Magnetized ICF implosions: Non-axial magnetic field topologies
View PDF HTML (experimental)Abstract:This paper explores 4 different magnetic field topologies for application to spherical inertial confinement fusion implosions: axial, mirror, cusp and closed field lines. A mirror field is found to enhance the impact of magnetization over an axial field; this is because the mirror field more closely follows the hot-spot surface. A cusp field, while simple to generate, is not found to have any benefits over the tried-and-tested axial field. Closed field lines are found to be of the greatest benefit to hot-spot performance, with the simulated design undergoing a 2x increase in ion temperature before alpha-heating is considered. The plasma properties of the simulation with closed field lines are radically different from the unmagnetized counterpart, with electron temperatures in excess of 100 keV, suggesting that a fundamental redesign of the capsule implosion is possible if this method is pursued.
Submission history
From: Christopher Walsh [view email][v1] Fri, 15 Nov 2024 19:21:12 UTC (3,597 KB)
Current browse context:
physics.plasm-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.