High Energy Physics - Theory
[Submitted on 16 Nov 2024]
Title:Shear transport in far-from-equilibrium isotropization of supersymmetric Yang-Mills plasma
View PDF HTML (experimental)Abstract:We holographically study the far-from-equilibrium isotropization dynamics of the strongly coupled $\mathcal{N}=4$ supersymmetric Yang-Mills plasma. The dual gravitational background is driven to be out of equilibrium and anisotropic by a time-dependent change in boundary conditions. At late times, the system relaxes and asymptotically approaches a static configuration. The large initial energy densities accelerate the isotropization significantly compared to the initial geometry corresponding to the supersymmetric Yang-Mills vacuum. We analyze shear transport during isotropization by directly computing the time-dependent stress tensor, which is now a nonlinear function of the shear rate. The shear viscosity far from equilibrium displays much richer dynamics than its near-equilibrium counterpart. Moreover, we uncover that the equilibrium viscosity-to-entropy ratio at late times depends on the details of the quench function and the initial data, which could be due to a resummation of the hydrodynamic description. In particular, this ratio can be parametrically smaller than the Kovtun-Son-Starinets bound calculated from linear response theory.
Current browse context:
hep-th
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.