Quantitative Finance > Computational Finance
[Submitted on 17 Nov 2024]
Title:IVE: Enhanced Probabilistic Forecasting of Intraday Volume Ratio with Transformers
View PDF HTML (experimental)Abstract:This paper presents a new approach to volume ratio prediction in financial markets, specifically targeting the execution of Volume-Weighted Average Price (VWAP) strategies. Recognizing the importance of accurate volume profile forecasting, our research leverages the Transformer architecture to predict intraday volume ratio at a one-minute scale. We diverge from prior models that use log-transformed volume or turnover rates, instead opting for a prediction model that accounts for the intraday volume ratio's high variability, stabilized via log-normal transformation. Our input data incorporates not only the statistical properties of volume but also external volume-related features, absolute time information, and stock-specific characteristics to enhance prediction accuracy. The model structure includes an encoder-decoder Transformer architecture with a distribution head for greedy sampling, optimizing performance on high-liquidity stocks across both Korean and American markets. We extend the capabilities of our model beyond point prediction by introducing probabilistic forecasting that captures the mean and standard deviation of volume ratios, enabling the anticipation of significant intraday volume spikes. Furthermore, an agent with a simple trading logic demonstrates the practical application of our model through live trading tests in the Korean market, outperforming VWAP benchmarks over a period of two and a half months. Our findings underscore the potential of Transformer-based probabilistic models for volume ratio prediction and pave the way for future research advancements in this domain.
Current browse context:
q-fin.CP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.