Computer Science > Computational Complexity
[Submitted on 17 Nov 2024]
Title:Gadgetless Lifting Beats Round Elimination: Improved Lower Bounds for Pointer Chasing
View PDF HTML (experimental)Abstract:We prove an \Omega(n/k+k) communication lower bound on (k-1)-round distributional complexity of the k-step pointer chasing problem under uniform input distribution, improving the \Omega(n/k - k log n) lower bound due to Yehudayoff (Combinatorics Probability and Computing, 2020). Our lower bound almost matches the upper bound of O(n/k + k) communication by Nisan and Wigderson (STOC 91).
As part of our approach, we put forth gadgetless lifting, a new framework that lifts lower bounds for a family of restricted protocols into lower bounds for general protocols. A key step in gadgetless lifting is choosing the appropriate definition of restricted protocols. In this paper, our definition of restricted protocols is inspired by the structure-vs-pseudorandomness decomposition by Göös, Pitassi, and Watson (FOCS 17) and Yang and Zhang (STOC 24).
Previously, round-communication trade-offs were mainly obtained by round elimination and information complexity. Both methods have some barriers in some situations, and we believe gadgetless lifting could potentially address these barriers.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.