Condensed Matter > Disordered Systems and Neural Networks
[Submitted on 4 Nov 2024]
Title:Field theory of non-Hermitian disordered systems
View PDF HTML (experimental)Abstract:The interplay between non-Hermiticity and disorder gives rise to unique universality classes of Anderson transitions. Here, we develop a field-theoretical description of non-Hermitian disordered systems based on fermionic replica nonlinear sigma models. We classify the target manifolds of the nonlinear sigma models across all the 38-fold symmetry classes of non-Hermitian systems and corroborate the correspondence of the universality classes of Anderson transitions between non-Hermitian systems and Hermitized systems with additional chiral symmetry. We apply the nonlinear sigma model framework to study the spectral properties of non-Hermitian random matrices with particle-hole symmetry. Furthermore, we demonstrate that the Anderson transition unique to nonreciprocal disordered systems in one dimension, including the Hatano-Nelson model, originates from the competition between the kinetic and topological terms in a one-dimensional nonlinear sigma model. We also discuss the critical phenomena of non-Hermitian disordered systems with symmetry and topology in higher dimensions.
Current browse context:
cond-mat.dis-nn
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.