Computer Science > Computers and Society
[Submitted on 4 Nov 2024]
Title:Large language models for mental health
View PDF HTML (experimental)Abstract:Digital technologies have long been explored as a complement to standard procedure in mental health research and practice, ranging from the management of electronic health records to app-based interventions. The recent emergence of large language models (LLMs), both proprietary and open-source ones, represents a major new opportunity on that front. Yet there is still a divide between the community developing LLMs and the one which may benefit from them, thus hindering the beneficial translation of the technology into clinical use. This divide largely stems from the lack of a common language and understanding regarding the technology's inner workings, capabilities, and risks. Our narrative review attempts to bridge this gap by providing intuitive explanations behind the basic concepts related to contemporary LLMs.
Submission history
From: Andreas Triantafyllopoulos [view email][v1] Mon, 4 Nov 2024 14:02:00 UTC (666 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.