Astrophysics > High Energy Astrophysical Phenomena
[Submitted on 15 Nov 2024]
Title:A population study on the effect of metallicity on ZAMS to the merger
View PDF HTML (experimental)Abstract:Multiband observations of compact object sources offer a unique opportunity to explore their progenitors and enhance early multi-messenger alert. Recent analyses have indicated that metallicity significantly impacts the evolution of progenitors and the resulting compact objects. Using binary population synthesis, we investigate the formation of eccentric, inspiralling black hole binaries and black hole-neutron star binaries through the isolated binary evolution channel. We introduced a fiducial mass and metallicity relation for each ZAMS star. We model the stellar cluster of ZAMS stars by extending COSMIC's publicly available code. Our BPS code effectively accounts for the metallicity of each stellar object in the stellar cluster. In our analysis, we observed a significant increase in the number of inspiral binaries remaining in the stellar cluster. Instead of assuming a uniform metallicity for a stellar cluster, ZAMS stars within the cluster, characterized by diverse metallicity, evolve into more massive compact objects. The total mass of a single binary black hole inspiral varies from $\sim 9-86$ M$_\odot$; whereas for a black hole-neutron star system, this range becomes $\sim 6-32$ M$_\odot$. We compare the detectability of the characteristic strain against sub-Hz gravitational wave detectors.
Submission history
From: Sourav Chowdhury Roy [view email][v1] Fri, 15 Nov 2024 22:37:29 UTC (3,537 KB)
Current browse context:
astro-ph.HE
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.