Statistics > Computation
[Submitted on 18 Nov 2024]
Title:The occlusion process: improving sampler performance with parallel computation and variational approximation
View PDF HTML (experimental)Abstract:Autocorrelations in MCMC chains increase the variance of the estimators they produce. We propose the occlusion process to mitigate this problem. It is a process that sits upon an existing MCMC sampler, and occasionally replaces its samples with ones that are decorrelated from the chain. We show that this process inherits many desirable properties from the underlying MCMC sampler, such as a Law of Large Numbers, convergence in a normed function space, and geometric ergodicity, to name a few. We show how to simulate the occlusion process at no additional time-complexity to the underlying MCMC chain. This requires a threaded computer, and a variational approximation to the target distribution. We demonstrate empirically the occlusion process' decorrelation and variance reduction capabilities on two target distributions. The first is a bimodal Gaussian mixture model in 1d and 100d. The second is the Ising model on an arbitrary graph, for which we propose a novel variational distribution.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.